\qquad Period: \qquad
Directions: Factor the following quadratic functions.

1.	$x^{2}-4 x-12$	2.	$x^{2}+12 x+32$
3.	$x^{2}+7 x+10$	4.	$x^{2}-49$
5.	$x^{2}+6 x+9$	6.	$x^{2}-x-12$

Directions: Find the SOLUTIONS to the equations by Factoring.

$7.0=x^{2}+10 x+24$	8.	$0=x^{2}+x-30$

Directions: Factor the quadratic function to find the \boldsymbol{x}-intercepts. Then, find the \boldsymbol{y}-intercept of the quadratic function. Use all the x-intercepts and the \boldsymbol{y}-intercept each function.

9. $y=x^{2}+6 x+8$			
Factors:			
x-intercepts: ($)$ and ()
y-intercept: (,) (Hint	
Coefficients:			
Terms:			

10. Use the information you found in question \#9 to graph the function.

Directions: REVIEW - Follow the directions for each problem.
15. Double distribute or use an Area Model to multiply the binomials: $(x+4)(x-2)$
16. Find the vertex of the following quadratic function. Then, state if the point is a max or a min.
$y=3 x^{2}-12 x+5$

A. Which function hits the maximum first (hint: which maximum has a smaller x-value)?
B. Which function has the greater maximum?

